Exercises 2

Exercice 2.1

Une radiation illuminant une surface de sodium provoque l'émission d'un électron à une vitesse de 100 m/s.

Quelle est la longueur d'onde du rayon incident ? (l'énergie d'ionisation E_I = 2.28 eV et 1 eV = 1.602 \cdot 10⁻¹⁹ J)

Exercice 2.2

Une lampe émet chaque seconde une énergie équivalant à 7 J. En $10 \, \text{s}$, $9.4 \cdot 10^{19}$ photons sont émis. En supposant que tous ces photons ont la même fréquence, quelle est, en PHz, cette fréquence?

Exercice 2.3

Quelle est la vitesse (en m/s) d'un neutron dont la longueur d'onde est de 4.43·10⁻¹ nm? Sachant que la taille des objets détectés par une mesure dépend de la longueur d'onde employée, donner une application possible de longueurs d'onde aussi courtes.

Exercice 2.4

Un photon de longueur d'onde 150 pm éjecte d'un atome un électron dont l'énergie d'ionisation vaut $1.12 \cdot 10^{-15}$ J. A quelle vitesse sera émis cet électron?

Exercice 2.5

L'énergie nécessaire pour ioniser un atome donné est de $3.44 \cdot 10^{-18}$ J. Cet atome absorbe un photon en émettant un électron à $1.03 \cdot 10^6$ m/s.

Quelle est la longueur d'onde et le type (UV, visible, infrarouge, gamma, ...) du photon qui a été absorbé?

Exercice 2.6

Quelle est la variation d'énergie d'un atome de lithium qui émet un photon de longueur d'onde 683 nm? Quelle est la couleur du photon émis?

Exercice 2.7

Un électron est enfermé dans un espace dont la taille est de l'ordre de grandeur de l'atome : 100 pm. Quelle est l'incertitude minimale de sa quantité de mouvement?